A Uniform Constant of Strong Uniqueness on an Interval

CHARLES B. DUNHAM*

Computer Science Department, University of Western Ontario, London, Ontario, N6A 5B9 Canada

Communicated by Richard S. Varga

Received July 10, 1978

Consider approximation in $C[x, \beta]$ with respect to the Chebyshev (sup) norm. Real continuous functions f are to be approximated by elements of a fixed *n*-dimensional Haar subspace H. It is well known [2] that there is $\gamma = \gamma(f) > 0$, called a constant of strong uniqueness (SU constant), such that for p^* best to f,

$$||f-p|| - |f-p^*|| \ge \gamma ||p-p^*||,$$

for all $p \in H$. In this note we consider whether certain subsets of $C[\alpha, \beta]$ have a *uniform* $\gamma > 0$.

Such a problem was considered by Cline [3] for a general compact X (rather than for an interval $[\alpha, \beta]$), by Bartelt [1] for finite domains, and by Henry and Schmidt [5] for intervals. The subsets of Henry and Schmidt are compact and hence include no neighborhoods: our subsets will not have that defect.

A uniform constant of strong uniqueness guarantees a uniform Lipschitz constant, as shown in the text of Cheney [2, p. 82].

In approximation by constants it is seen that we can set $\gamma = 1$. More generally, in approximation by Haar subspace of dimension 1, it is seen by arguments as in [2, p. 81] that γ can be set equal to

$$\inf\{\phi(x): x \in [\alpha, \beta]\} / \sup\{\phi(x): x \in [\alpha, \beta]\}$$

for ϕ , a positive basis function. It has been proven by Cline [3, p. 164] that a uniform Lipschitz constant cannot exist on infinite compact X when n > 1: by the cited result in Cheney no uniform SU constant can exist in this case, either. As Cline's construction is elaborate, it may be more instructive to consider a simple example.

* Written on a subbatical leave at the University of British Columbia.

EXAMPLE. Let $[x, \beta] = [-1, 1]$. Approximate by first-degree polynomials. Let

$$f_k(0) = 1$$
 $f_k(1/k) = -1$ $f_k(x) = 0$, for $x = 2/k$.

Extend f_k to [0, 1] by straight lines between 0 and 1 k and between 1 k and 2_k . Extend f_k to [-1, 1] by making f_k even. As $f_k - 0$ alternates twice on [-1, 1], 0 is the unique best approximation to f_k with error norm 1. The approximation ηx has an error norm of $1 - \eta/k$ for η small and differs from 0 by η in norm. Hence a strong uniqueness constant γ for f_k can be no larger than 1/k.

It is easily seen that this example can be extended to approximation by polynomials of degree *n* by constructing even f_k with n - 3 alternations in a 1/k neighborhood of zero and zero outside a 2.*k*-neighbourhood of zero.

A key property appears to be separation in alternants.

DEFINITION. The separation of a strictly increasing n-1 point set $\{x_0, ..., x_n\}$ is

$$\min\{x_{i=1} - x_i : i = 0, \dots, n-1\}.$$

THEOREM 1. Let $n \ge 2$. Let f_k be a sequence such that the optimal error curve for f_k has only one alternant X^k and the separation of X^k tends to zero. Then $\gamma(f_k) \to 0$.

Proof. Let p_k be best to $f_k \, \{X^k\}$ has an accumulation point X^0 of no more than *n* distinct points. By taking a subsequence, if necessary, we can assume $\{X^k\} \to X^0$. By taking a subsequence, if necessary, we can assume that two adjacent points of the alternants X^k coalesce to a point $z \in X^0$, say $\{x_0^k\} \to z, \{x_1^k\} \to z$. We now consider the number of distinct points in X^0 . If it is $\leq n - 1$, select $p_0 \equiv 0$ vanishing on X_0 . If it is exactly *n*, select $p_0 \equiv 0$ vanishing on all but one point $\neq z$. Let the subscript of that point be *j*. Let $\epsilon > 0$ be given. Let $W = \{x: p_0(x) = 0, x \in X^0\}$. There is a neighborhood *N* of *W* such that $p_0(x) < \epsilon \mid p_0 \mid$ for $x \in N$. Select *k* such that $\{x_0^k, x_1^k\} \in N$. In the event $X^0 \sim W$ is nonempty, there is a neighborhood *M* of x_j^k such that $f_k - p_k$ is of constant sign on *M*. As the only extrema of $f_k - p_k$ are in X^k , there is a constant *L* such that for $|\eta| < L$ and $x \in N$,

$$f_k(x) - p_k(x) - \eta p_0(x) < f_k - p_n + \eta \epsilon p_0$$

In the evant $X^0 \sim W$ is nonempty, choosing η small and of the correct sign gives

$$f_k(x) - p_k(x) - \eta p_0(x) < f_k - p_k \qquad x \in M$$

Hence for η small and of the correct sign,

$$\|f_k - p_k - \eta p_0\| \leqslant \|f_k - p_k\| - \|\eta\| \epsilon \cdot p_0\|.$$

But $p_k - (p_k - \eta p_0) = \eta + p_0$, hence f_k has a strong uniqueness constant of no more than ϵ .

It follows that if we want a uniform strong uniqueness constant γ , we must take only a subset of $C[\alpha, \beta]$, with separation in alternants desirable.

DEFINITION. For $\delta > 0$, let F_{δ} be the subset of $C[\alpha, \beta]$ with at least one alternant of the optimal error curve having separation $\geq \delta$.

THEOREM 2. F_{δ} has a uniform strong uniqueness constant γ .

Proof. Let γ be the infimum of $e(q, X) = \max\{(-1)^i q(x_i) : i = 0, ..., n\}$ over all approximants q of norm 1 and all strictly increasing n + 1 point sets $X = \{x_0, ..., x_n\}$ with separation $\geq \delta$. This infimum is taken over a compact set and e depends continuously on q, X. By arguments in the text of Cheney, γ must be > 0 and is a uniform strong uniqueness constant.

We consider stability of separation under perturbation.

THEOREM 3. Let $\{f_k\} \rightarrow f$ and p_k be best to f_k . Let X^k be an alternant of $f_k - p_k$. Any accumulation point of X^k is an alternant of $f - p^*$.

Proof. By continuity of the best approximation operator, $\{p_k\} \rightarrow p^*$, hence $\{f_k - p_k\} \rightarrow f - p^*$. Let x be in an accumulation point W for $\{X_k\}$. Then x must be an extremum of $f - p^*$. If $f - p^*$ did not alternate n times on W, then $f_k - p_k$ would not alternate n times on X^k for k large.

COROLLARY. Let f have a unique alternant X of its optimum error $f - p^*$. Let $\{f_k\} \rightarrow f$ and p_k be best to f_k . Let X^k be an alternant of $f_k - p_k$, then $\{X^k\} \rightarrow X$.

Conversely, if f does not have a unique alternant, we can select an alternant X and construct g arbitrarily close to f with p^* best and X the only extrema of $g - p^*$. One such construction in the case $f - p^* \equiv 0$ is to choose g_k such that

$$g_k(x) - p^*(x) = [f(x) - p^*(x)][1 - \operatorname{dist}(x, X)/k]$$

It follows that the (maximum) separation of alternants for nearby functions g can be much less than for f.

DEFINITION. $G_{\delta} = \{f: \text{ all alternants have separation } > \delta\}$. By the arguments of Theorems 2 and 3, **THEOREM 4.** G_{β} has a uniform strong uniqueness constant and is an open subset of $C[x, \beta]$.

A straightforward extension of the problem is the case of mandatory endpoint zeros. Consider approximation by an *n*-dimensional Haar subspace with null set Z [7, p. 291] consisting of one or both endpoints (that is, the subspace is a Haar subspace on $[x, \beta] \sim Z$ and vanishes identically on Z), with f also vanishing on Z. An alternating theory holds in this case also [7, p. 292]. The arguments of Cheney [2, pp. 89–81] for choosing a $\gamma = 0$ extend to this case with no additional arguments needed. We show later that there can be no uniform SU constant over f continuous on $[x, \beta]$ and vanishing on Z.

In the definition of separation we add $x_0 - \alpha$ to the braces if $\chi \in Z$ and $\beta - x_n$ to the braces if $\beta \in Z$. Theorems 1–4 need no changes. In the case n = 1 we choose alternants X^k such that both points tend to a point of Z and use the arguments of Theorem 1 to get SU constant $\rightarrow 0$.

A further generalization is to replace $[x, \beta]$ by a compact metric space X, as in the text of Cheney, and to possibly replace Haar subspaces by Haar subspaces with null space Z [7, p. 291] with f required to vanish on Z. We replace alternants by n - 1 point critical point sets (Rice [11, p. 233] = n - 1 point IED sets (Dunham [8, p. 132]) = n - 1 point minimal *H*-sets (Geiger [9]) = n - 1 point primitive extremal signatures (Gutknecht [10]). The theorems extend easily, with the definition of separation for an n - 1 point set $\{x_i\}$ being

$$\min\{\rho(x_i, x_j), i \neq j, \rho(x_i, z), z \in Z\}.$$

A further generalization is to approximate two continuous functions $f^$ and f^- simultaneously, $f^- \leq f^-$, as in Dunham [6]. In the case of no straddle point [6, p. 473, (3)], best approximation on $[\alpha, \beta]$ is characterized by a special kind of alternation. The theory of the text of Cheney [2, Chap. 3] can handle simultaneous approximation on a compact metric space X by creating two copies of X. Cheney's argument [2, pp. 80–81] gives strong uniqueness if no straddle points occurs. Theorems I–3 extend, Theorem 4 holds with $\{f^-, f^-\}$ in the definition of G_δ required to have no straddle points. To show openness, suppose there existed $\{f_k^-\} \rightarrow f^-$, $\{f_k^-\} \rightarrow f_k^-$, $f_k^- \leq f_k^-$, with (f_k^-, f_k^-) having a straddle point at x_k . Assume that $\{x_k\} \rightarrow x_0$, then (f^-, f^-) has a straddle point at x_0 .

ACKNOWLEDGMENT

The author would like to thank the referee for his constructive criticism.

210

STRONG UNIQUENESS

References

- 1. M. BARTELT, On Lipschitz conditions, strong unicity, and a theorem of A. K. Cline, J. Approximation Theory 14 (1975), 245–250.
- 2. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 3. A. K. CLINE, Lipschitz conditions on uniform approximation operators, J. Approximation Theory 8 (1973), 160–172.
- 4. M. S. HENRY AND J. A. ROULIER, Uniform Lipschitz constants on small intervals, J. Approximation Theory 21 (1977), 224–235.
- 5. M. S. HENRY AND D. SCHMIDT, Continuity theorems for the product approximation operator, *in* "Theory of Approximation with Applications," (A. G. Law and B. N. Sahney, Eds.), Academic Press, New York, 1976.
- 6. C. DUNHAM, Simultaneous Chebyshev approximation of functions on an interval, *Proc. Amer. Math. Soc.* **18** (1967), 472–477.
- C. DUNHAM, Families satisfying the Haar condition, J. Approximation Theory 12 (1974), 291–298.
- 8. C. DUNHAM, Nearby linear Chebyshev approximation, *Æquations Math.* 16 (1977), 129–135.
- C. GEIGER, Minimale H-Mengen, starke Eindeutigkeit, und stetigkeit der Tschebyscheffoperators, Z. Angew. Math. Mech. 54 (1974), 627–634.
- 10. M. GUTKNECHT, Non-strong uniqueness in real and complex approximation, J. Approximation Theory 23 (1978), 204-213.
- 11. J. R. RICE, "The Approximation of Functions," Vol. 2, Addison-Wesley, Reading, Mass., 1969.