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Consider approximation in C[x, 8] with respect to the Chebyshev (sup)
norm. Real continuous functions f are to be approximated by elements of a
fixed n-dimensional Haar subspace H. It is well known [2] that there is
vy = y(f) >0, called a constant of strong uniqueness (SU constant), such
that for p* best to f.

Sf=pi—f=p* =yip—p*i,

for all p € H. In this note we consider whether certain subsets of C[x, 8] have
a uniformy > Q.

Such a problem was considered by Cline [3] for a general compact X
(rather than for an interval [«, 8]), by Bartelt [1] for finite domains, and by
Henry and Schmidt [5] for intervals. The subsets of Henry and Schmidt are
compact and hence include no neighborhoods: our subsets will not have that
defect.

A uniform constant of strong uniqueness guarantees a uniform Lipschitz
constant, as shown in the text of Cheney {2, p. 82].

In approximation by constants it is seen that we can set v = 1. More
generally, in approximation by Haar subspace of dimension I, it is seen by
arguments as in [2, p. 81] that o can be set equal to

inf{@(x): x € [, BI}/sup{(x): x € [«, B}

for ¢, a positive basis function. It has been proven by Cline [3, p. 164] that
a uniform Lipschitz constant cannot exist on infinite compact X when n > 1:
by the cited result in Cheney no uniform SU constant can exist in this case,
either. As Cline’s construction is elaborate, it may be more instructive to
consider a simple example.

* Written on a subbatical leave at the University of British Columbia.
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Examere. Let [v B8] [—I.1]. Approximate by tirst-degree polyno-
mials. Let

Fl0) 1 fllk) - —1  fx) - O.forx .~ 2 k.

Extend /. to [0. 1] by straight lines between 0 and | A and between [ 4 and
2.k. Extend f,. to [—1. 1] by making f, even. As f, — 0 alternates twice on
[—1.1]. O is the unique best approximation to f, with error norm I. The
approximation nx has an error norm of | --- 'k for » small and differs from
0 by % in norm. Hence a strong uniqueness constant v for £, can be no larger
than 1'k.

It is easily seen that this example can be extended to approximation by
polynomials of degree n by constructing even f;, with # —- 3 alternations in a
1k neighborhood of zero and zero outside a 2.k-neighbourhood of zero.

A key property appears to be separation in alternants.

DerixiTiON. The separation of a strictly increasing # — | point set
{Xg s X1 IS
min{x,_, —x, ¢ --0...,n— 1.
THEOREM 1. Let n .: 2. Let f,. be a sequence such that the optimal error

curve for f,. has only one alternant X* and the separation of X* tends to -ero.
Then ( f,.) — O.

Proof. Let p, be best to f, . {X*} has an accumulation point X" of no
more than # distinct points. By taking a subsequence. if necessary, we can
assume {X*{ -— X" By taking a subsequence, if necessary. we can assume
that two adjacent points of the alternants .Y* coalesce to a point = € X°, say
{x" = =, {x,"1 — z. We now consider the number of distinct points in X°. If
it is = 7 — [, select p, == 0 vanishing on X, . If it is exactly n, select p, == 0
vanishing on all but one point =< -. Let the subscript of that point be j. Let
€ > 0 be given. Let W = {x: pi(x) = 0, x € X*}. There is a neighborhood N
of W such that . pi(x) < €| py| for x € N. Select k such that {x,*. x;*} T N.
In the event X° ~ W is nonempty, there is a neighborhood Af of x;* such
that f; -— p, is of constant sign on M. As the only extrema of f, — p, are
in X*, there is a constant L such that for % <2 L. the norm of f, — p, —
Npa i on [, 3] must be attainedon N U M. For n! < Land xe N,

X)) — pxy — p(x) < fo—p. F m.€py

In the evant X® ~ W is nonempty. choosing » small and of the correct sign
gives

SlxX) — pudx) — ppo(x) < fi — i x=M
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Hence for » small and of the correct sign,

Wfe—pe—npy ' < fr—pe|l—im €pol.

But .p, —(p. —py)i= m.1py. . hence f. has a strong uniqueness
constant of no more than e.

It follows that if we want a uniform strong uniqueness constant y, we must
take only a subset of C[«, B], with separation in alternants desirable.

DerINITION.  For 6 = 0, let F; be the subset of C[x, B] with at least one
alternant of the optimal error curve having separation >= d.

THEOREM 2. F; has a uniform strong uniqueness constant vy.

Proof. Let y be the infimum of e(g, X) = max{(—1) q(x;):i =0,..., n}
over all approximants g of norm | and all strictly increasing n + 1 point sets
X ={xy,.... X,} with separation > §. This infimum is taken over a compact
set and e depends continuously on ¢, X. By arguments in the text of Cheney,
» must be > 0 and is a uniform strong uniqueness constant.

We consider stability of separation under perturbation.

THeOREM 3. Let {f,} — f and p,. be best to f, . Let X be an alternant of
fi — p. . Any accumulation point of X* is an alternant of f — p™.

Proof. By continuity of the best approximation operator, {p,} — p*, hence
{fi —p,t —f — p*. Let x be in an accumulation point W for {X,}. Then x
must be an extremum of f— p=. If f — p> did not alternate »n times on W,
then f; — p,. would not alternate n times on X* for k large.

CoroOLLARY. Let f have a unique alternant X of its optimum error  — p*.
Let {{.} — f and p,, be best to f,,. Let X be an alternant of f;,, — p,. . then
{X*] — X.

Conversely, if fdoes not have a unique alternant, we can select an alternant
X and construct g arbitrarily close to f with p* best and X the only extrema
of g — p*. One such construction in the case f — p= = 0 is to choose g, such
that

gux) — p(x) = [f(x) — p*()][l — dist(x. X)k].

1t follows that the (maximum) separation of alternants for nearby functions
g can be much less than for f.

DeriniTioN. G, = {f* all alternants have separation “- 8}.
By the arguments of Theorems 2 and 3,
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THEOREM 4. G has « uniforim strong uniqueness constant and is un open

subset of C[x, B].

A straightforward extension of the problem is the case of mandatory
endpoint zeros. Consider approximation by an #-dimensional Haar subspace
with null set Z [7. p. 291] consisting of one or both endpoints (that is, the
subspace is a Haar subspace on [x. 3] ~ Z and vanishes identically on Z),
with f also vanishing on Z. An alternating theory holds in this case also
[7, p. 292]. The arguments of Cheney {2, pp. 89-81] for choosing a ;v 0
extend to this case with no additional arguments needed. We show later that
there can be no uniform SU constant over f continuous on [x. 5] and vanis-
hing on Z.

In the definition of separation we add x, — ~ to the braces if v < Z and
B — x, to the braces if 8 Z. Theorems 1-4 need no changes. In the case
#n = 1 we choose alternants X'* such that both points tend to a point of Z and
use the arguments of Theorem 1 to get SU constant — 0.

A further generalization is to replace [x. ] by a compact metric space .\,
as in the text of Cheney, and to possibly replace Haar subspaces by Haar
subspaces with null space Z [7, p. 291] with f required to vanish on Z. We
replace alternants by » — | point critical point sets (Rice {11, p. 233} -
n — | point 1ED sets (Dunham {8.p. 132]) =n - | point minimal f-sets
(Geiger [9]) = n — | point primitive extremal signatures (Gutknecht [10]).
The theorems extend easily, with the definition of separation for an n 1
point set {x;] being

min{p(x; , x;). { = j. p(x;,2), € Z}.

A further generalization is to approximate two continuous functions f~
and f~ simultaneously, f~ <¢ f-, as in Dunham [6]. In the case of no straddle
point [6, p. 473, (3)], best approximation on [a, 3] is characterized by a
special kind of alternation. The theory of the text of Cheney [2, Chap. 3] can
handle simultaneous approximation on a compact metric space X by creating
two copies of X. Cheney’s argument [2, pp. 80-81] gives strong uniqueness
if no straddle points occurs. Theorems -3 extend. Theorem 4 holds with
{f~, /") in the definition of G; required to have no straddle points. To
show openness, suppose there existed {f,”} —/f~. {/i ) =>fi fim < fi
with (f,,~, ;) having a straddle point at x,. Assume that {x,} — X, . then
(f~.f™) has a straddle point at x, .
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