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Consider approximation in C[c"l:, f3] with respect to the Chebyshev (sup)
norm. Real continuous functions f are to be approximated by elements of a
fixed n-dimensional Haar subspace H. It is well known [2] that there is
y =, y(f) > 0, called a constant of strong uniqueness (SU constant), such
that for p* best tor,

If - pi, - If - p* ; ?: y 11 p - p*:, ,

for allp E H. In this note we consider whether certain subsets of C[:x, f3] have
a uniform y > 0.

Such a problem was considered by Cline [3] for a general compact X
(rather than for an interval [:X, ,8]), by Bartelt [1] for finite domains, and by
Henry and Schmidt [5] for intervals. The subsets of Henry and Schmidt are
compact and hence include no neighborhoods: our subsets will not have that
defect.

A uniform constant of strong uniqueness guarantees a uniform Lipschitz
constant, as shown in the text of Cheney [2, p. 82].

In approximation by constants it is seen that we can set y = I. More
generally, in approximation by Haar subspace of dimension I, it is seen by
arguments as in [2, p. 81] that y can be set equal to

inf{4>(x): x E [el, f3]},'sup{ 4>(x): x E [:X, f3]}

for 4>, a positive basis function. It has been proven by Cline [3, p. 164] that
a uniform Lipschitz constant cannot exist on infinite compact X when n > 1:
by the cited result in Cheney no uniform SU constant can exist in this case,
either. As Cline's construction is elaborate, it may be more instructive to
consider a simple example.

* Written on a subbatical leave at the University of British Columbia.
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EXi\"PlE. Let [\,8]
mials. Let
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[-- I. I]. Approximate by tirst-degree polyno-

h,(x) O. for x -' 2 k.

Extend;;: to [0. 1] by straight lines between 0 and I k and between I k and
2;k. Extend I: to [-I. I] by making .t:... even. As .iI,· - 0 alternates twice on
[-I. I]. 0 is the unique best approximation to f, with error norm I. The
approximation YJX has an error norm of I -0- r(k for 'Y) small and differs from
oby 'Y) in norm. Hence a strong uniqueness constant y forI,. can be no larger
than I ;k.

It is easily seen that this example can be extended to approximation by
polynomials of degree II by constructing even f,: with n _. 3 alternations in a
l,k neighborhood of zero and zero outside a 2.k-neighbourhood of zero.

A key property appears to be separation in alternants.

DEFI,mON. The separation of a strictly increasing n - I point set
{xu .... , x n': is

min':Xicl - x, : i .0..... II - I:.

THEORE\I I. Let n 0:.; 2. Let f" be a sequence such that the optimal error
curve for ,ii, has only 0/11' alternant XI: and the separation of Xl' tends to :::ero.
Then yC/;..) ---+ O.

Proof Let Pk be best to j;, . {XI,: has an accumulation point Xu of no
more than n distinct points. By taking a subsequence. if necessary, we can
assume {XI,: ---+ Xo. By taking a subsequence. if necessary. we can assume
that two adjacent points of the alternants X', coalesce to a point::: E Xo, say
{XO

i
,; ---+:::. {x/i -->-:::. We now consider the number of distinct points in Xo. If

it is ~.-.. II - I. select Pu ~ °vanishing on Xu' If it is exactly n, select Po == 0
vanishing on all but one point "'•. :::. Let the subscript of that point be j. Let
E > 0 be given. Let W = {x: Po(.') = 0, x E XU]. There is a neighborhood N
of 1-1' such that. Po(x) < E i Pu I for x E N. Select k such that {XO"• Xl"} C S.
Jn the event XO ~ W is nonempty, there is a neighborhood ttl of x/ such
that f" -- PI. is of constant sign on M. As the only extrema of f" - Ph are
in Xl.. there is a constant L such that for 'Y) <: L. the norm of f,. - P,. .­
'Y)p(I ; on [:t. ;3] must be attained on IV U /11. For YJ I < L and x E :'\1,

fk(x) - p,,(x) - 'Y)PoC,) <f" - P,,: + 'Y). E . Po .

In the evant Xu ."-' W is nonempty. choosing 'Y) small and of the correct sign
gives

j;,.(x) - PI.'(X) - 'Y)Po(x) <:: . iI - Pic
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Hence for TJ small and of the correct sign,

i! /k - Pk - TJPo : ~ f" - P" I - ! 11 E·' Po I .
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But .' PI. - (p" - TJPo) i = TJ,' Po. ' hence f,.. has a strong uniqueness
constant of no more than E-

It follows that if we want a uniform strong uniqueness constant y, we must
take only a subset of e[e'-, ,8], with separation in alternants desirable.

DEFll'ITIOI". For 8 > 0, let Fa be the subset of q.\, ,8] with at least one
alternant of the optimal error curve having separation ;'" 8.

THEOREM 2. Fa has a uniform strong uniqueness constant y.

Proof Let y be the infimum of e(q, X) = max{(-l)i q(x;) : i = 0'00" n}
over all approximants q of norm I and all strictly increasing n + 1 point sets
X = {xo '00" x n] with separation ~ 8. This infimum is taken over a compact
set and e depends continuously on q, X. By arguments in the text of Cheney,
y must be .> °and is a uniform strong uniqueness constant.

We consider stability of separation under perturbation.

THEORPvl 3. Let U;,: -+/ and p" be best to f" . Let X" be an alternant 0/
1,.. - P" . Any accumulation point 0/ X" is an alternant all- p x

•

Proof By continuity of the best approximation operator, {p,,] -+ p\ hence
{I" - Ph: -+/ - p*. Let x be in an accumulation point W for {X,..}, Then x
must be an extremum of/ - px. If/ - p X did not alternate n times on W.
thenf;, - P,,' would not alternate 11 times on X'· for k large.

COROLLARY. Let/hare a unique alternant X of its optimum error/ - p".
Let {/,.J -+f and P" be best to f,... Let X" be an alternant 0/1" - PI:, then
{X'·] -. X.

Conversely, if/does not have a unique alternant. we can select an alternant
X and construct g arbitrarily close to / with p'" best and X the only extrema
of g - p"'. One such construction in the case/ - p" ~ °is to choose g", such
that

g,,(x) - pX(x) = [1(x) - p*(x)][l -- dist(x. X)'k].

It follows that the (maximum) separation of alternants for nearby functions
g can be much less than for f

DEFlr\ITION. Ga = {I: all alternants have separation> 8].
By the arguments of Theorems 2 and 3,
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THEORE:\[ 4. G., Iw.1 (/ uniforlll strong uniqueness constafll alld is (//1 opel!

subset of C[ t, pJ.
A straightforward extension of the problem is the case of mandatory

endpoint zeros. Consider approximation by ann-dimensional Haar subspace
with null set Z [7. p. 291] consisting of one or both endpoints (that is. the
subspace is a Haar subspace on [.t. /3] -.... Z and vanishes identically on Z),
Ivith f also vanishing on Z. An alternating theory holds in this case also
[7, p. 292]. The arguments of Cheney [2. pp. 89-81] for choosing a;J 0
extend to this case with no additional arguments needed. We shO\\ later that
there can be no uniform SU constant over f continuous on [.t. /3] and vanis­
hing on Z.

In the definition of separation \ve add X o - '\ to the braces if t ~ Z and
f3 - XII to the braces if pE Z. Theorems 1-4 need no changes. In the case
/1 = 1 \ve choose alternants X" such that both points tend to a point of Z and
use the arguments of Theorem I to get S U constant ---+ O.

A further generalization is to replace [t.. p] by a compact metric space X,
as in the text of Cheney, and to possibly replace Haar subspaces by Haar
subspaces with null space Z [7, p. 291] with f required to vanish on Z. We
replace alternants by n - I point critical point sets (Rice [II, p. 233) ..
n ..:.. I point IED sets (Dunham [8. p. 132]) = 11 I point minimal H-sets
(Geiger [9)) = n - I point primitive extremal signatures (Gutknecht [10]).
The theorems extend easily. with the definition of separation for an n I
point set {Xii being

min{p(xi' xJ. i ~ j. p(x;, '::-),'::- E Z~.

A further generalization is to approximate two continuous functions f­
andf- simultaneouslyJ- < f . as in Dunham [6]. In the case of no straddle
point [6, p. 473, (3)], best approximation on [t., j3] is characterized by a
special kind of alternation. The theory of the text of Cheney [2, Chap. 3] can
handle simultaneous approximation on a compact metric space X by creating
two copies of X. Cheney's argument [2, pp. 80-81] gives strong uniqueness
if no straddle points occurs. Theorems 1-3 extend, Theorem 4 holds with
{f-J-J in the definition of Ga required to have no straddle points. To
shO\v openness, suppose there existed U;,,-J ---+f-, Cfl,} ---+h,c, h,- ,0; he,
with ({,,-,h,-) having a straddle point at Xk . Assume that {XkJ ---+ Xu. then
(f-Jc) has a straddle point at X o '
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